Abstract

CircRNAs are implicated in the development of several cancers. Nevertheless, the involvement of circ_0000118 in the development of cervical cancer (CC) remains unclear. Circ_0000118 levels in tumor tissues and cells were examined by qRT-PCR. The function of circ_0000118 in regulating the malignancy of CC cells was investigated using functional assays, including CCK-8, colony formation, transwell, and tube formation experiments. The functional interaction between circ_0000118 and microRNAs were validated by dual-luciferase activity assay and RNA precipitation experiments. In vivo mouse model was employed to assess the effect of circ_0000118 in the tumorigenesis of CC cells. Circ_0000118 was overexpressed in CC cells and tissues. Loss-of-function experiments demonstrated that circ_0000118 knockdown impaired the proliferation and tumor sphere formation, as well as the angiogenic potential of CC cells. RNA interaction experiments confirmed that circ_0000118 sponged miR-211-5p and miR-377-3p. AKT2 was found to be a target gene negatively modulated by miR-211-5p and miR-377-3p. AKT2 overexpression rescued the inhibition of circ_0000118 downregulation on CC cells. Our study suggested that circ_0000118 functions as an oncogenic factor in progression of CC by maintaining AKT2 level through targeting miR-211-5p and miR-377-3p as a ceRNA (competitive endogenous RNA), which provides novel therapeutic target in the management of CC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.