Abstract

The malignant transformation of normal bladder cells (SV-HUC-1) was induced by arsenite to explore the possible mechanism of circRNA-100284 influencing bladder cancer cell proliferation. Normal bladder SV-HUC-1 cells were cultured with 2μM arsenite to induce malignant transformation. After 0, 3, 6, 12, and 24h of culture, the expression level of circRNA-100284 in cells was detected by quantitative real-time PCR. Western blotting assays were used to detect the expression levels of EZH2 and cyclin-D1 proteins in cells treated with different media. Cell cycle was analyzed by flow cytometry. In addition, through cell transfection and CCK-8 experiments, the effect and mechanism of circRNA-100284 targeting microRNA-217 on proliferation was determined. The interaction between HSP70 methylation and Aurora-B was determined by Western blotting and immunoprecipitation experiments. With prolonged contact time with arsenite, the expression level of circRNA-100284 in cells increased continuously (P < 0.05). Western blotting assays showed that the expression levels of EZH2 and cyclin-D1 proteins in arsenite-transformed cells increased. Flow cytometry and CCK-8 showed that circRNA-100284 accelerated cell cycle transition and cell proliferation through miR-217. Finally, after culturing human bladder cancer T24 cells, combined with immunoprecipitation and in vitro kinase experiments, it was found that K561- dimethyl HSP70 activated Aurora-B, thus promoting the proliferation of bladder cancer cells. CircRNA-100284 activates aurora kinase B by inducing methylation of HSP70 via microRNA-217 to promote the proliferation of bladder cancer cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.