Abstract

Hepatic steatosis reflects the miRNA-related pathological disorder with triglyceride accumulation and lipid peroxidation, which leads to nonalcoholic steatohepatitis, liver fibrosis/cirrhosis, and even hepatocellular carcinoma. Circular RNA (circRNA)/miRNA interaction reveals a novel layer of epigenetic regulation, yet the miRNA-targeting circRNA remains uncertain in hepatic steatosis. Here, we uncover circRNA_0046367 to be endogenous modulator of miR-34a that underlies hepatic steatosis. In contrast to its expression loss during the hepatocellular steatosis in vivo and in vitro, circRNA_0046367 normalization abolished miR-34a's inhibitory effect on peroxisome proliferator-activated receptor α (PPARα) via blocking the miRNA/mRNA interaction with miRNA response elements (MREs). PPARα restoration led to the transcriptional activation of genes associated with lipid metabolism, including carnitine palmitoyltransferase 2 (CPT2) and acyl-CoA binding domain containing 3 (ACBD3), and then resulted in the steatosis resolution. Hepatotoxicity of steatosis-related lipid peroxidation, being characterized by mitochondrial dysfunction, growth arrest, and apoptosis, is resultantly prevented after the circRNA_0046367 administration. These findings indicate a circRNA_0046367/miR-34a/PPARα regulatory system underlying hepatic steatosis. Normalized expression of circRNA_0046367 may ameliorate the lipoxidative stress on the basis of steatosis attenuation. circRNA_0046367, therefore, is suggested to be potential approach to the therapy of lipid peroxidative damage.

Highlights

  • Hepatic steatosis, an ever-growing pathological disorder associated with metabolic syndrome and other etiologies [1,2,3,4,5], displays characteristics of triglyceride (TG) accumulation, lipid peroxidation, and mitochondrial dysfunction [1]

  • This oxidation-based hepatocellular injury deeply involves in the disease progression with outcomes of nonalcoholic steatohepatitis, liver fibrosis/cirrhosis, and hepatocellular carcinoma [6]

  • Clinical and experimental studies have uncovered the critical roles of miRNAs during initiation, progression, and resolution of hepatic steatosis [7,8,9,10,11,12,13,14]. miR-199a-5p among these contributes to the impaired mitochondrial β-oxidation of fatty acid and aberrant lipid deposits [7]. miR-291b-3p promotes the hepatic lipogenesis by negative regulation of adenosine 5′-monophosphate(AMP-) activated protein kinase α1 [8]

Read more

Summary

Introduction

An ever-growing pathological disorder associated with metabolic syndrome and other etiologies [1,2,3,4,5], displays characteristics of triglyceride (TG) accumulation, lipid peroxidation, and mitochondrial dysfunction [1]. This oxidation-based hepatocellular injury deeply involves in the disease progression with outcomes of nonalcoholic steatohepatitis, liver fibrosis/cirrhosis, and hepatocellular carcinoma [6]. In spite of its clinical importance, hepatic steatosis is still prevented from effective therapy, with the only exceptions of dietary control and physical activity, due to our limited understanding of the underlying mechanisms.

Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call