Abstract
Circular RNAs act as vital regulators in diverse diseases. However, the investigation of circular RNAs in sepsis-engendered acute kidney injury remains dismal. We aimed to explore the effects of circular RNA protein kinase C iota (circ-PRKCI) in lipopolysaccharide (LPS)-mediated HK2 cell injury. Sepsis in vitro model was established by LPS treatment. Quantitative real-time polymerase chain reaction assay was conducted for determining the levels of circ-PRKCI, microRNA-106b-5p (miR-106b-5p), and growth factor receptor binding 2-associated binding protein 1 (GAB1). Cell viability and apoptosis were evaluated using Cell Counting Kit-8 assay and flow cytometry analysis, respectively. The concentrations of interleukin-6, interleukin-1β, and tumor necrosis factor-α were measured with enzyme-linked immunosorbent assay kits. The levels of oxidative stress markers were determined using relevant commercial kits. Western blot assay was conducted for B-cell lymphoma-2 (Bcl-2), BCL2-Associated X (Bax), and GAB1 protein levels. Dual-luciferase reporter assay and RNA immunoprecipitation assay were used to verify the association between miR-106b-5p and circ-PRKCI or GAB1. We found the Circ-PRKCI level was decreased in sepsis patients and LPS-induced human kidney 2 (HK-2) cells. LPS exposure inhibited cell viability and facilitated apoptosis, inflammation, and oxidative stress in HK-2 cells. Circ-PRKCI overexpression abrogated the effects of LPS on cell apoptosis, inflammation, and oxidative stress in HK-2 cells. Furthermore, circ-PRKCI was identified as the sponge for miR-106b-5p to positively regulate GAB1 expression. Overexpression of circ-PRKCI relieved LPS-mediated HK-2 cell damage by sponging miR-106b-5p. MiR-106b-5p inhibition ameliorated the injury of HK-2 cells mediated by LPS, whereas GAB1 knockdown reversed the effect. Collectively, Circ-PRKCI overexpression attenuated LPS-induced HK-2 cell injury by regulating miR-106b-5p/GAB1 axis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.