Abstract

ABSTRACT Purpose: Circular RNAs (circRNAs) are essential regulators in tumorigenesis and development. In this study, we focused on the functions of circRNA muskelin 1 (circMKLN1) in retinoblastoma (RB) progression. Materials and Methods: Quantitative real-time polymerase chain reaction (qRT-PCR) assay was conducted to determine the levels of circMKLN1, microRNA-425-5p (miR-425-5p) and programmed cell death 4 (PDCD4). The characteristic of circMKLN1 was analyzed using RNase R assay. Cell Counting Kit-8 (CCK-8) assay and colony formation assay were employed to explore cell proliferation ability. The transwell assay was utilized for cell migration and invasion. A Western blot assay was performed for protein levels. The dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were conducted to demonstrate the relationships among circMKLN1, miR-425-5p and PDCD4. Murine xenograft model assay was adopted to investigate the role of circMKLN1 in vivo. Results: CircMKLN1 was downregulated in RB tissues and cells. High levels of circMKLN1 were related to a favorable outcome of RB patients. CircMKLN1 was resistant to RNase R digestion and circMKLN1 overexpression repressed RB cell proliferation, migration and invasion in vitro. MiR-425-5p was identified as the target of circMKLN1 and miR-425-5p elevation reversed the effects of circMKLN1 overexpression on RB cell malignant behaviors. Furthermore, as the target gene of miR-425-5p, PDCD4 silencing could ameliorate the suppressive roles of circMKLN1 in RB cell growth and metastasis. Additionally, circMKLN1 overexpression hampered tumor growth in vivo. Conclusions: CircMKLN1 overexpression decelerated the progression of RB through sponging miR-425-5p and elevating PDCD4.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.