Abstract

Quantifying molecular dynamics of cell membrane constituents is required to understand organization and function of biological membranes. Because of its complex structure unambiguous interpretation of molecular membrane dynamics requires high spatial and temporal resolution measurements. In this paper, we provide a comprehensive description of circle scanning fluorescence correlation spectroscopy and its combination with stimulated emission depletion microscopy (CS-STED-FCS). This method allows quantification of sub-diffusion processes and direct mapping of heterogeneities in membranes with high spatiotemporal resolution. We show how to use model membranes to calibrate and test the technique and how to apply it in the context of living cells to quantify membrane dynamics with high spatiotemporal resolution and good statistics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call