Abstract

A Bl-packing is a (branched) circle packing that “properly covers” the unit disc. We establish some fundamental properties of such packings. We give necessary and sufficient conditions for their existence, prove their uniqueness, and show that their underlying surfaces, known as carriers, are quasiconformally equivalent to surfaces of classical Blaschke products. We also extend the approximation results of to general combinatorial patterns of tangencies in Bl-packings. Finally, a branched version of the Discrete Uniformization Theorem of [1] is given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.