Abstract

Let f be a circle class P homeomorphism with two break points 0 and c. If the rotation number of f is of bounded type and f is C2(S1∖{0, c}) then the unique f-invariant probability measure is absolutely continuous with respect to the Lebesgue measure if and only if 0 and c are on the same orbit and the product of their f-jumps is 1. We indicate how this result extends to class P homeomorphisms of rotation number of bounded type and with a finite number of break points such that f admits at least two break points 0 and c not on the same orbit and that the jump of f at c is not the product of some f-jumps at breaks points not belonging to the orbits of 0 and c.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.