Abstract

Bio-inspired computing has demonstrated to be useful in several application areas. Over the last decade, new bio-inspired algorithms have emerged with applications for detection, optimisation and classification for use in computer vision tasks. On the other hand, automatic circle detection in digital images is considered an important and complex task for the computer vision community. Consequently, a tremendous amount of research has been devoted to find an optimal circle detector. This article presents an algorithm for the automatic detection of circular shapes from complicated and noisy images with no consideration of the conventional Hough transform principles. The proposed algorithm is based on newly developed Artificial Immune Optimisation (AIO) technique, known as the Clonal Selection Algorithm (CSA). The CSA is an effective method for searching and optimising following the Clonal Selection Principle (CSP) in the human immune system which generates a response according to the relationship between antigens (Ags), i.e. patterns to be recognised and antibodies (Abs), i.e. possible solutions. The algorithm uses the encoding of three points as candidate circles (x,y,r) over the edge image. An objective function evaluates if such candidate circles (Ab) are actually present in the edge image (Ag). Guided by the values of this objective function, the set of encoded candidate circles are evolved using the CSA so that they can fit to the actual circles on the edge map of the image. Experimental results over several synthetic as well as natural images with varying range of complexity validate the efficiency of the proposed technique with regard to accuracy, speed and robustness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call