Abstract

Circular RNAs (circRNAs) have been identified as vital regulators in cardiovascular diseases, including acute myocardial infarction (AMI). In this study, the function and mechanism of circRNA heparan sulfate proteoglycan 2 (circHSPG2) in hypoxia-induced injury in AC16 cardiomyocytes were investigated. AC16 cells were stimulated with hypoxia to establish an AMI cell model in vitro. Real-time quantitative PCR and western blot assays were performed to quantify the expression levels of circHSPG2, microRNA-1184 (miR-1184), and mitogen-activated protein kinase kinase kinase 2 (MAP3K2). Counting Kit-8 (CCK-8) assay was used to measure cell viability. Flow cytometry was performed to detect cell cycle and apoptosis. Enzyme-linked immunosorbent assay (ELISA) was used to determine the expression of inflammatory factors. Dual-luciferase reporter, RNA immunoprecipitation (RIP), and RNA pull-down assays were used to analyze the relationship between miR-1184 and circHSPG2 or MAP3K2. In AMI serum, circHSPG2 and MAP3K2 mRNA were highly expressed and miR-1184 was down-regulated. Hypoxia treatment elevated HIF1α expression and repressed cell growth and glycolysis. Moreover, hypoxia promoted cell apoptosis, inflammation, and oxidative stress in AC16 cells. Hypoxia-induced circHSPG2 expression in AC16 cells. CircHSPG2 knockdown alleviated hypoxia-induced AC16 cell injury. CircHSPG2 directly targeted miR-1184, and miR-1184 targeted and suppressed MAP3K2. Inhibition of miR-1184 or overexpression of MAP3K2 abolished the alleviated effect of circHSPG2 knockdown on hypoxia-induced AC16 cell injury. Overexpression of miR-1184 relieved hypoxia-induced impairment in AC16 cells by MAP3K2. CircHSPG2 could regulate MAP3K2 expression through miR-1184. CircHSPG2 knockdown protected AC16 cells from hypoxia-induced injury by regulating the miR-1184/MAP3K2 cascade.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call