Abstract

Ischaemic stroke is one of the most common causes of mortality and morbidity.circDlgap4 has been implicated in ischemia/reperfusion injury through an unknown mechanism. Here, we studied the function of circDlgap4/AUF1 in ischaemic stroke and its underlying molecular mechanism. N2a cells and primary mouse cortical neurons were subjected to OGD to mimic neuronal injury during ischemia. BV-2 cells were treated with LPS to mimic neuroinflammation. The MTT assay was used to assess cell viability, while flow cytometry was used to measure cell apoptosis. qRT-PCR, western blotting, immunohistochemistry, and immunostaining were employed to determine the levels of circDlgap4, AUF1, NRF2/HO-1, proinflammatory cytokines, NF-κB pathway-related proteins, and IBA-1. RIP and RNA pulldown assays were employed to validate the interactions of circDlgap4/AUF1, AUF1/NRF2, and AUF1/cytokine mRNAs. mRNA degradation was used to determine the effects on mRNA stability. The tMCAO model was used as an in vivo model of ischaemic stroke. TCC staining and neurological scoring were performed to evaluate ischaemic injury. circDlgap4 was decreased following OGD and during tMCAO. circDlgap4 overexpression inhibited OGD-induced cell death and oxidative stress and LPS-induced increases in proinflammatory cytokines by increasing NRF2/HO-1. Knockdown of AUF1 blocked the effects of circDlgap4 overexpression. Mechanistically, RIP, RNA pulldown, and mRNA degradation assay results showed circDlgap4/AUF1/NRF2 mRNA formed a complex to stabilize NRF2 mRNA. Furthermore, AUF1 directly interacted with TNF-α, IL-1β, and COX-2 mRNAs, and circDlgap4/AUF1 binding promoted the degradation of these mRNAs. Finally, circDlgap4 ameliorated ischaemic injury in vivo. circDlgap4 alleviates ischaemic stroke injury by suppressing oxidative stress and neuroinflammation by binding to AUF1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call