Abstract
Endometrial cancer (EC) is the most common gynecological tumor. Circular RNAs are a novel type of non-coding RNA that have important regulatory functions, particularly in the pathogenic progression of cancer. In this study, we investigated the function of circCCL22, and elucidated its molecular mechanism in EC progresssion. The expression of circCCL22, miR-543 and CDC25A in EC tissues and cells were determined by qRT-PCR and western blot. Cell counting kit-8, 5-ethynyl-2'-deoxyuridine, wound healing and transwell assays were executed to assess the cell viability, proliferation, migration and invasion. Dual-luciferase report assay was utilized to investigate the interaction of miR-543 with circCCL22 and CDC25A. The role of circCCL22 in EC in vivo was investigated by xenograft assay. CircCCL22 was notably upregulated in EC tissues and cells. Functionally, circCCL22 knockdown suppressed EC cell proliferation, migration and invasion in vitro, and inhibited tumor growth in vivo. Mechanistically, circCCL22 acted as "miR-543 sponges" to regulate its targeted gene CDC25A expression in EC cells. The inhibiting effect induced by circCCL22 knockdown on EC cell proliferation, migration and invasion was greatly reversed by miR-543 inhibition or CDC25A overexpression. Our results revealed that circCCL22 regulated EC progression through targeting miR-543/CDC25A axis, and it could be a novel therapeutic target of EC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.