Abstract

Precise timing of gene transcription is a fundamental component of many biological rhythms. DNA methylation and histone acetylation are two epigenetic modifications that can affect the probability of gene transcription and RNA expression. Enzymes involved in DNA methylation (dnmts) have been shown to exhibit photoperiodic rhythms in expression in the hypothalamus, which coincide with hypothalamic expression of deiodinase type III (dio3), a gene involved in the photoperiodic regulation of reproduction. It is currently unknown whether enzymes involved in histone deacetylation (hdacs) also vary in response to photoperiod, nor have seasonal changes in the circadian waveforms of methylation and/or acetylation enzymes been examined. The present work documents circadian and photoperiodic changes in dnmts and hdacs in whole hypothalamic dissections obtained from male Siberian hamsters (Phodopus sungorus) after 5–6weeks of exposure to SD. The data indicate that short days (SD) markedly inhibit dnmt3a expression, and that SD inhibition of dnmt3a was evident regardless of the alignment of circadian waveforms. Among hdacs, photoperiodic and circadian changes in expression were only observed in hdac4 expression. Recurrent temporal waveforms in epigenetic enzyme expression may provide molecular inputs to the timing systems that reprogram RNA expression to generate daily and annual phenotypic plasticity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call