Abstract

The influence of food and water intake on renal function was assessed by comparisons between the hyperphagic Zucker obese rat and its lean littermate, which demonstrates nocturnal dominance in activity. Serum creatinine and cortisol levels, creatine kinase activities, creatinine and urine clearances, and sodium and potassium excretion rates were measured over a 24-hour period in both lean and obese rats (n = 24 each). Six rats in each group were studied every 8 h to permit characterization over a 12-hour light/dark cycle at 2-hour intervals. Urine and creatinine clearances were increased in lean rats during the dark phase coincident with onset of eating. Similarly, renal sodium and potassium excretion rates were markedly increased during the dark cycle, despite relatively constant serum potassium and sodium levels over the 24-hour period. In contrast, no circadian patterns in urine and creatinine clearances were found in the obese rat, which exhibits continuous feeding habits throughout the 24-hour period. Moreover, renal electrolyte excretion in the obese rat was modestly increased during the dark cycle, unlike the significant differences over time observed in lean rats. Serum creatinine levels were increased during the dark cycle in both rat groups. Creatine kinase activity, a measure of ambulatory activity, was constant in lean rats during the study period. Although creatine kinase activity was increased in obese rats during the dark cycle, no correlations with renal functional parameters were found. These results indicate that differences in food and water intake are significant determinants in diurnal cyclic changes in renal function.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call