Abstract

Studies in humans have found circadian changes to be one of the most important sources of controllable preanalytical variability when evaluating bone cell activity using biochemical markers. It remains unclear whether similar circadian changes influence bone marker concentrations in the horse. The aim of this study was to characterize changes in serum concentrations of three biochemical markers of bone cell activity over a 24-h period in six 2-yr-old Thoroughbred mares, and to determine circadian variability in IGF-I, which regulates bone turnover. Three bone markers were measured in serum: osteocalcin, a marker of bone formation, the carboxy-terminal propeptide of type-I collagen (a marker of bone formation), and the carboxy-terminal telopeptide of type-I collagen (a marker of bone resorption). Data were analyzed using the cosinor technique, which fits a 24-h cycle to each dataset. A significant circadian rhythm was observed for osteocalcin (P = 0.028), with an estimated amplitude of 7.6% of the mean (95% confidence interval 1.3% to 16.3%), and an estimated peak time of 0900. However, the observed rhythm for the carboxy-terminal telopeptide of type-I collagen (amplitude = 7.4%) was not significant (P = 0.067), and there were no significant changes in concentrations of the carboxy-terminal propeptide of type-I collagen over the 24-h study period (P = 0.44). There was a small but significant circadian rhythm for IGF-I (P = 0.04), with an estimated amplitude of 3.4% (95% confidence interval 0.2 to 7.1%) and peak at 1730. Further studies are now required to determine the potential association between circadian changes in IGF-I and osteocalcin in the horse. Although no significant circadian variation was found in concentrations of the car-boxy-terminal propeptide of type-I collagen and the carboxy-terminal telopeptide of type-I collagen, this may in part be a result of the age of the animals that were still skeletally immature. Future studies should aim to determine whether these markers develop a circadian rhythm at a later age when growth is complete. In the meantime, consistency in time of sampling should continue to be considered best practice when measuring biochemical markers of bone turnover in the horse.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call