Abstract

While intermittent fasting is a safe strategy to benefit health, it remains unclear whether a "timer" exists invivo to record fasting duration and trigger a transcriptional switch. Here, we map a circadian transcriptional pathway atlas from 600 samples across four metabolic tissues of mice under five feeding regimens. Results show that 95.6% of detected canonical pathways are rhythmic in a tissue-specific and feeding-regimen-specific manner, while only less than 25% of them induce changes in transcriptional function. Fasting for 16h initiates a circadian resonance of 43 pathways in the liver, and the resonance punctually switches following refeeding. The hepatic proteasome coordinates the resonance, and most genes encoding proteasome subunits display a 16-h fasting-dependent transcriptional switch. These findings indicate that the hepatic proteasome may serve as a fasting timer and a coordinator of pathway transcriptional resonance, which provide a target for revealing the underlying mechanism of intermittent fasting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call