Abstract

The adipose tissue homeostasis is profoundly affected by circadian rhythms of corticosteroid secretion and chronic loss of hormonal oscillations is associated with obesity. How adipose tissue differentially responds to pulsatile vs continuous presence of glucocorticoids is poorly defined. To address this question, Bahrami-Nejad et al studied differentiation of pre-adipocytes, containing endogenously tagged CCAAT/enhancer binding protein and peroxisome proliferator-activated receptor (PPAR) γ (key regulators of adipocyte differentiation), in response to corticosteroids that were delivered either in an oscillatory fashion or continuously. The authors show that the bi-stable state of differentiation of pre-adipocytes and adipocytes was regulated by a combination of fast and slow positive feedback networks, that determined unique threshold of PPARγ in these cells. Evidently, pre-adipocytes used the fast feedback loop to reject differentiation cues of oscillating pulses of glucocorticoids and failed to differentiate into fat cells. In contrast, when glucocorticoids were delivered continuously, precursor cells exploited the slow feedback loop to embark on a path of maximal differentiation. This differential differentiation response of pre-adipocytes to pulsatile vs continuous exposure to glucocorticoids was corroborated in vivo. Thus, mice receiving non-oscillating doses of exogenous glucocorticoids, for 21 d, elicited excessive accumulation of visceral and subcutaneous fat. These data shed new light on the mechanisms of obesity caused by putative misalignment of circadian secretion of glucocorticoids or their persistently high levels due to chronic stress or Cushing’s disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call