Abstract

The physiological role and relevance of the mechanisms sustaining circadian rhythms have been acknowledged. Abnormalities of the circadian and/or sleep-wakefulness cycles can result in major metabolic disorders or behavioral/professional inadequacies and stand as independent risk factors for metabolic, psychiatric, and cerebrovascular disorders and early markers of disease. Neuroimaging and clinical evidence have documented functional interactions between autonomic (ANS) and CNS structures that are described by a concept model (Central Autonomic Network) based on the brain-heart two-way interplay. The circadian rhythms of autonomic function, ANS-mediated processes, and ANS/CNS interaction appear to be sources of variability adding to a variety of environmental factors, and may become crucial when considering the ANS major role in internal environment constancy and adaptation that are fundamental to homeostasis. The CNS/ANS interaction has not yet obtained full attention and systematic investigation remains overdue.

Highlights

  • Circadian rhythms are governed by a biological master clock and by intrinsically cyclic clock genes regulated by the hormonal status and environmental factors

  • The hypothalamus is a key target of suprachiasmatic nuclei (SCN) and the core structure complying with circadian variations in the control of sleep/wakefulness alternation and hormone release, as well as in the regulation of food intake and liver, pancreas, kidney, and heart function [5,6,8,10,24,25,26,27]

  • medial preoptic area (MPA) is influenced by feeding, metabolism, hormones, inflammation and the time of day, olfactory information from the nucleus of the solitary tract (NTS) and olfactory bulb that trigger an increase in temperature in postprandial time [25,34,35,36]

Read more

Summary

Introduction

Circadian rhythms are governed by a biological master clock (synchronized on the fluctuations in light intensity and temperature) and by intrinsically cyclic clock genes regulated by the hormonal status and environmental factors. This arrangement controls metabolism, endocrine secretion, cardiovascular and motor activity, and the sleep-wakefulness cycle of light-sensitive organisms, guaranteeing homeostatic constancy, efficiency of physiological processes, and the adaptation to internal/external changes and requirements [1,2,3,4,5,6,7,8,9,10,11,12]. Public Health 2019, 16, 2336; doi:10.3390/ijerph16132336 www.mdpi.com/journal/ijerph

Circadian Rhythms and Hypothalamic Control
Circadian Rhythms and Sleep
Circadian Rhythms and Age
Comments
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.