Abstract

BackgroundIt is known that the circadian rhythm phase in adults can be advanced in a natural light-dark cycle without electrical lighting. However, the effect of advanced sleep-wake timing according to the natural light-dark cycle on children’s circadian phase is unclear. We investigated the effects of approximately 2 weeks of camping life with little access to artificial lighting on children’s circadian phases. We also conducted an exploratory examination on the effects of wake time according to natural sunrise time on the manner of the advance of their circadian phases.MethodsTwenty-one healthy children (mean ± SD age, 10.6 ± 1.4 years) participated in a camping program with wake time (4:00) being earlier than sunrise time (EW condition), and 21 healthy children (10.4 ± 1.1 years) participated in a camping program with wake time (5:00) being almost matched to sunrise time (SW condition). Salivary dim light melatonin onset (DLMO) before the camping program and that after approximately 2 weeks of camping were compared.ResultsDLMO was advanced by approximately 2 h after the camping program compared with the circadian phase in daily life in both conditions. In addition, the advances in DLMO were significantly correlated with mid-sleep points before the camp in both conditions (EW: r = 0.72, p < 0.01, SW: r = 0.70, p < 0.01). These correlations mean that the phase advance was greater for the children with delayed sleep habits in daily life. Furthermore, in the EW condition, mean DLMO after the camp (18:09 ± 0:33 h) was earlier than natural sunset time and there was no significant decrease in interindividual variability in DLMO. On the other hand, in the SW condition, mean DLMO after the camp (18:43 ± 0:20 h) matched natural sunset time and interindividual variability in DLMO was significantly lower than that before the camp.ConclusionsCamping with advanced sleep and wake timing under natural sunlight advances children’s circadian phases. However, DLMO earlier than sunset in an early waking condition may lead to large interindividual variability in the circadian rhythm phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.