Abstract

ABSTRACT Atherosclerosis (AS) is a chronic inflammatory disease which gives rise to life-threatening complications like ischemic stroke. Rupture of carotid atherosclerotic plaque is the main cause of ischemic stroke. Emerging evidence has demonstrated that disturbed circadian rhythms could accelerate the progression of atherosclerosis by regulating endothelial function. Moreover, our previous study implicated the circadian gene circadian locomotor output cycles kaput (CLOCK) in the pathogenesis of unstable plaques. In this study, we explored the underlying mechanism that CLOCK mediates endothelial cell autophagy involved in the progression of AS. Circadian and autophagy gene expression was analyzed in the GSE41571 dataset and human carotid atherosclerotic plaque samples. Then we used ox-LDL to treat HUVECs, and analyzed CLOCK and autophagy gene in endothelial cells. Besides that, we comprehensively analyzed in vivo experiments to explore the function of CLOCK in autophagy and atherosclerosis using different staining including HE, MT and IF staining. In the dataset and patient samples, CLOCK expression and autophagy were decreased in the unstable plaque group compared with the stable group. Decreased Beclin1, ATG5, LC3, and CLOCK were also observed in HUVECs under oxidative stress condition which also enhances cell proliferation. In vivo, we also found decreasing level of CLOCK, Beclin1, LC3 and ATG5 in ApoE−/− mice compared with WT mice. Silencing of CLOCK in ApoE−/− mice may further aggravate atherosclerosis including decreased cap thickness and collagens. Our findings implicated that downregulation CLOCK would impair endothelial cell autophagy and accelerate atherosclerotic plaque, which provides a novel strategy for treatment of progression in AS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call