Abstract

Proper functioning of the human circadian timing system is crucial to physical and mental health. Much of what we know about this system is based on experimental protocols that induce the desynchronization of behavioral and physiological rhythms within individual subjects, but the neural (or extraneural) substrates for such desynchronization are unknown. We have developed an animal model of human internal desynchrony in which rats are exposed to artificially short (22-h) light-dark cycles. Under these conditions, locomotor activity, sleep-wake, and slow-wave sleep (SWS) exhibit two rhythms within individual animals, one entrained to the 22-h light-dark cycle and the other free-running with a period >24 h (tau(>24 h)). Whereas core body temperature showed two rhythms as well, further analysis indicates this variable oscillates more according to the tau(>24 h) rhythm than to the 22-h rhythm, and that this oscillation is due to an activity-independent circadian regulation. Paradoxical sleep (PS), on the other hand, shows only one free-running rhythm. Our results show that, similarly to humans, (i) circadian rhythms can be internally dissociated in a controlled and predictable manner in the rat and (ii) the circadian rhythms of sleep-wake and SWS can be desynchronized from the rhythms of PS and core body temperature within individual animals. This model now allows for a deeper understanding of the human timekeeping mechanism, for testing potential therapies for circadian dysrhythmias, and for studying the biology of PS and SWS states in a neurologically intact model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.