Abstract

Amino acid tryptophan is catabolised via the kynurenine and serotonin–melatonin pathways, leading to various biologically active metabolites involved in regulating immunity, metabolism, and neuronal function. The levels of these metabolites are determined by the enzymes, which respond to altered homeostasis and pathological processes in the body. For the pineal gland, most work has centred on the serotonin–melatonin pathway. Still, no information exists on the expression of kynurenine pathway enzymes (KPEs), which may compete for the same substrate. Therefore, in this study, we investigated the physiological expression of KPEs in the rat pineal gland and their alterations in response to acute inflammation. We further compared the pineal expression profiles with the KPE expression in the rat liver and heart. Our data indicate the basal, non-induced expression of KPEs in the pineal gland, liver, and hearts, with a few first-step enzyme exceptions, such as Tdo and Ido1, and the first-step enzyme of serotonin pathway Tph1. This physiological expression was regulated in a circadian manner in the pineal gland and liver but not in the heart. Peripheral treatment with lipopolysaccharide resulted in mild upregulation of Tph1 in the pineal gland and heart, more robust upregulation of KPEs in the pineal gland and heart, but downregulation of Kmo, KatII, and Kynu in the liver. Altogether, our data provide evidence on the physiological expression of KPEs in the pineal gland, liver, and heart, which is regulated by the circadian clock in a tissue-specific manner. Furthermore, we show the temporal dynamics and bidirectional change in the transcriptional patterns of KPEs, Tph1, Per2, Nr1d1, and Stat3 in response to systemic administration of lipopolysaccharide in these tissues.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call