Abstract

Glucocorticoids, the end-products of the hypothalamic-pituitary- adrenal (HPA) axis, influence the functions of virtually all organs and tissues through the nuclear glucocorticoid receptor (GR). Circulating levels of glucocorticoids fluctuate naturally in a circadian fashion under the strong influence of the hypothalamic suprachiasmatic nucleus (SCN) circadian CLOCK system, and regulate the transcriptional activity of the GR in the brain and peripheral target tissues. We recently reported that the basic helix-loop- helix transcription factor Clock, which is a histone acetyltransferase and a central component of the self-oscillating transcription factor loop that generates circadian rhythms, represses GR transcriptional activity by acetylating lysine residues within the 'lysine cluster' located in the hinge region of the receptor. This Clock-mediated repression of GR transcriptional activity oscillates in inverse phase to the HPA axis, acting as a target tissue counter-regulatory mechanism to the diurnally fluctuating circulating glucocorticoids. Interestingly, mild evening elevations of corti-sol, as occurs in chronic stress situations, and frequent uncoupling of the SCN CLOCK-directed HPA axis from the daily oscillation of target tissue sensitivity to glucocorticoids, as happens in trans-time zone travel and night shift work, produce functional hypercortisolism and, hence, multiple components of the metabolic syndrome with resultant cardiovascular complications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.