Abstract

The circadian clock is an advantageous adaptive system that enables organisms to predict and anticipate the daily environmental changes. The circadian rhythms are generated molecularly through the expression of clock genes, based on autoregulatory feedback loops. Honeybees are an excellent model to investigate how the circadian rhythms are modulated accordingly to the social context, behavioral plasticity, and task-related activities. Here, we show how the clock genes behave during the daily cycles in adult worker heads of Apis mellifera. Our results point to the clock genes period and cryptochrome as essential regulators of the circadian rhythms associated to the behavioral maturation in this social insect. We also identified putative miRNA-target and protein-protein interactions involving honeybee clock genes, indicating regulatory networks behind the adjustment of the molecular clock.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call