Abstract

Airway diseases are associated with abnormal circadian rhythms of lung function, reflected in daily changes of airway caliber, airway resistance, respiratory symptoms, and abnormal immune-inflammatory responses. Circadian rhythms are generated at the cellular level by an autoregulatory feedback loop of interlocked transcription factors collectively referred to as clock genes. The molecular clock is altered by cigarette smoke, LPS, and bacterial and viral infections in mouse and human lungs and in patients with chronic airway diseases. Stress-mediated post-translational modification of molecular clock proteins, brain and muscle aryl hydrocarbon receptor nuclear translocator-like 1 (BMAL1) and PERIOD 2, is associated with a reduction in the activity/level of the deacetylase sirtuin 1 (SIRT1). Similarly, the levels of the nuclear receptor REV-ERBα and retinoic acid receptor-related orphan receptor α (ROR α), critical regulators of Bmal1 expression, are altered by environmental stresses. Molecular clock dysfunction is implicated in immune and inflammatory responses, DNA damage response, and cellular senescence. The molecular clock in the lung also regulates the timing of glucocorticoid sensitivity and phasic responsiveness to inflammation. Herein, we review our current understanding of clock-controlled cellular and molecular functions in the lungs, the impact of clock dysfunction in chronic airway disease, and the response of the pulmonary clock to different environmental perturbations. Furthermore, we discuss the evidence for candidate signaling pathways, such as the SIRT1-BMAL1-REV-ERBα axis, as novel targets for chronopharmacological management of chronic airway diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.