Abstract

In Drosophila melanogaster, as in most other higher organisms, a circadian clock controls the rhythmic distribution of rest/sleep and locomotor activity. Here we report that the morphology of Drosophila flight neuromuscular terminals changes between day and night, with a rhythm in synaptic bouton size that continues in constant darkness, but is abolished during aging. Furthermore, arrhythmic mutations in the clock genes timeless and period also disrupt this circadian rhythm. Finally, these clock mutants also have an opposing effect on the nonrhythmic phenotype of neuronal branching, with tim mutants showing a dramatic hyperbranching morphology and per mutants having fewer branches than wild-type flies. These unexpected results reveal further circadian as well as nonclock related pleiotropic effects for these classic behavioral mutants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.