Abstract
BackgroundBehaviour and time spent active and inactive are key factors in animal ecology, with important consequences for bioenergetics. For the first time, here, we equipped the gastropod Tectus (= Trochus) niloticus with accelerometers to describe activity rhythms at two sites in the Southwest Pacific with different temperature regimes: New Caledonia and Vanuatu.ResultsBased on a 24-hour cycle, T. niloticus activity began at dusk and gradually stopped during the night, before sunrise. This nocturnal behaviour was characterised by short (duration <30 s), low intensity (acceleration < 0.12 ɡ) movements and was probably associated with foraging behaviour. We assumed that activity ceased once the animal was satiated. Our analysis of two size groups in Vanuatu (80–90 mm vs. 120–140 mm, basal shell diameter) revealed a size effect; smaller specimens displayed greater activity, reflected by more intense and longer movements while migrating at night toward the edge of the reef. This nocturnal behaviour is not uncommon for grazing gastropods and is mainly associated with attempting to avoid visual predators whilst feeding.ConclusionsThe use of accelerometers coupled with light and temperature sensors provided detailed information on topshell behaviour and physiology under natural conditions. These data provide a foundation for identifying potential changes in the fine-scale behaviour of T. niloticus in response to environmental changes, which is essential in animal ecology and stock conservation.
Highlights
Behaviour and time spent active and inactive are key factors in animal ecology, with important consequences for bioenergetics
Topshell movements We identified 52 977 and 10 638 movements in New Caledonia and Vanuatu, respectively (Table 1)
The effect of size on activity In Vanuatu, two set of topshells were observed: four small organisms and four large organisms measuring 85.5 ± 5.1 mm and 132.3 ± 9.2 mm, respectively. These size-based groups did not differ in activity rhythms, but Rhythms of activity Determining the periods of active behaviour is essential in animal ecology
Summary
Behaviour and time spent active and inactive are key factors in animal ecology, with important consequences for bioenergetics. Accelerometry is a valuable method for obtaining descriptions of behaviours, such as locomotion, foraging, and escaping predators, as well as exploring the influence of environmental parameters and/or energy budgets in a range of animals [10,11,12,13,14]. Combining this technology with others sensors on tagged animals, such as light and ambient temperature sensors, allows the examination of activity rhythms in relation to environmental conditions [15,16,17]. Brown et al [18] noted that accelerometry studies between 1998 and Jolivet et al Movement Ecology (2015) 3:26
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.