Abstract

Sleep physiology and waking performance are regulated through the interaction of an endogenous circadian process and a sleep-wake–dependent homeostatic process. The two processes are not independent: the observed circadian amplitude of waking performance depends on homeostatic sleep pressure, so that the negative effects of sleep loss are most pronounced in the early morning if homeostatic sleep pressure is high. These findings underscore the close interrelations between sleep, circadian rhythmicity, and waking performance and suggest that some circadian phenotypes are related to changes in sleep-regulatory processes. Understanding the effects of these alterations in clock genes, such as PER3, at the cellular and biochemical level may provide insights into the nature of the sleep homeostat and its interaction with circadian rhythmicity in the regulation of waking performance. Sleep physiology and waking performance are regulated through the interaction of an endogenous circadian process and a sleep-wake–dependent homeostatic process. The two processes are not independent: the observed circadian amplitude of waking performance depends on homeostatic sleep pressure, so that the negative effects of sleep loss are most pronounced in the early morning if homeostatic sleep pressure is high. These findings underscore the close interrelations between sleep, circadian rhythmicity, and waking performance and suggest that some circadian phenotypes are related to changes in sleep-regulatory processes. Understanding the effects of these alterations in clock genes, such as PER3, at the cellular and biochemical level may provide insights into the nature of the sleep homeostat and its interaction with circadian rhythmicity in the regulation of waking performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.