Abstract

Epilepsy has long been suspected to be governed by cyclic rhythms, with seizure rates rising and falling periodically over weeks, months, or even years. The very long scales of seizure patterns seem to defy natural explanation and have sometimes been attributed to hormonal cycles or environmental factors. This study aimed to quantify the strength and prevalence of seizure cycles at multiple temporal scales across a large cohort of people with epilepsy. This retrospective cohort study used the two most comprehensive databases of human seizures (SeizureTracker [USA] and NeuroVista [Melbourne, VIC, Australia]) and analytic techniques from circular statistics to analyse patients with epilepsy for the presence and frequency of multitemporal cycles of seizure activity. NeuroVista patients were selected on the basis of having intractable focal epilepsy; data from patients with at least 30 clinical seizures were used. SeizureTracker participants are self selected and data do not adhere to any specific criteria; we used patients with a minimum of 100 seizures. The presence of seizure cycles over multiple time scales was measured using the mean resultant length (R value). The Rayleigh test and Hodges-Ajne test were used to test for circular uniformity. Monte-Carlo simulations were used to confirm the results of the Rayleigh test for seizure phase. We used data from 12 people from the NeuroVista study (data recorded from June 10, 2010, to Aug 22, 2012) and 1118 patients from the SeizureTracker database (data recorded from Jan 1, 2007, to Oct 19, 2015). At least 891 (80%) of 1118 patients in the SeizureTracker cohort and 11 (92%) of 12 patients in the NeuroVista cohort showed circadian (24 h) modulation of their seizure rates. In the NeuroVista cohort, patient 8 had a significant cycle at precisely 1 week. Two others (patients 1 and 7) also had approximately 1-week cycles. Patients 1 and 4 had 2-week cycles. In the SeizureTracker cohort, between 77 (7%) and 233 (21%) of the 1118 patients showed strong circaseptan (weekly) rhythms, with a clear 7-day period. Between 151 (14%) and 247 (22%) patients had significant seizure cycles that were longer than 3 weeks. Seizure cycles were equally prevalent in men and women, and peak seizure rates were evenly distributed across all days of the week. Our results suggest that seizure cycles are robust, patient specific, and more widespread than previously understood. They align with the accepted consensus that most epilepsies have some diurnal influence. Variations in seizure rate have important clinical implications. Detection and tracking of seizure cycles on a patient-specific basis should be standard in epilepsy management practices. Australian National Health and Medical Research Council.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.