Abstract
Neonatal treatment with clomipramine (CMI) in rats induces multiple behavioral alterations during adulthood that resemble certain symptoms of human depression, such as impairments of pleasure-seeking behaviors. CMI may also induce permanent changes in the reactivity of the hypothalamic–pituitary–adrenocortical axis (HPA) to different stimuli; however, the endocrinal changes induced by this treatment are still a matter of debate. In the present study, we evaluated the levels of corticosterone in rats treated in the neonatal period with CMI in basal conditions (0, 6, 12 and 18 h after lights on) and after treatment with the antidepressant fluoxetine (FLX; 5 mg/kg for 14 days). To evaluate the response of the HPA axis to a cholinergic agonist, we analyzed the effect of oxotremorine administration (OXO; 0.4, 0.8 mg/kg) on plasma levels of corticosterone. Administration of OXO took place at the beginning of each one of the two phases of the light–dark cycle (time points 0 and 12 h, respectively). Results showed an increase in basal plasma levels of corticosterone in CMI-treated rats at time point zero and at 6 h after the onset of the light period. While treatment with FLX reversed the increase in corticosterone plasma levels in CMI-treated rats, the results regarding cholinergic stimulation indicate that those rats do not respond to the administration of a low dose of OXO (0.4 mg/kg) at the onset of the dark phase (time point 12 h). In conclusion, this study supports the hypothesis that neonatal treatment with CMI induces a hypersecretion of corticosterone in adulthood that was reversed through treatment with the antidepressant FLX. The CMI-treated rats showed a hyporesponse to cholinergic stimulation with OXO at low doses and at the beginning of the dark phase. Thus, the present results do not support the assumption that an increased sensitivity of the muscarinic cholinergic system is one of the possible correlates of the behavioral alterations seen in CMI-treated rats.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.