Abstract

Non-small-cell lung cancer (NSCLC) is one of the most serious cancers. The circular RNA_0078767 (circ_0078767) expression was decreased in NSCLC tissues. However, the molecular mechanism of circ_0078767 remains unknown. The expression of circ_0078767, microRNA-665 (miR-665), and glutathione peroxidase 3 (GPX3) was detected by quantitative real-time fluorescence polymerase chain reaction (qRT-PCR). Cell proliferation, migration, and invasion were detected by colony formation assay and transwell assay, respectively. The lactate production and glucose consumption were tested by glycolysis. Western blot examined the protein levels of hexokinase-2 (HK2), matrix metalloproteinase-9 (MMP9), and GPX3 cells. Circinteractome predicted the relationship between miR-665 and circ_0078767 or GPX3 and was verified by dual luciferase reporter assays. The xenotransplantation model was established to study the role of circ_0078767 in vivo. The expression of circ_0078767 and GPX3 was decreased in NSCLC tissues, while the expression of miR-665 was increased. Circ_0078767 can sponge miR-665, and GPX3 is the target of miR-665. In vitro complement experiments showed that knockdown of circ_0078767 significantly promoted malignant behavior of NSCLC, while cotransfection of miR-665 inhibitor partially reduced this change. In addition, the GPX3 overexpression decreased the promoting effects of miR-665 upregulation on proliferation, migration, and invasion of NSCLC cells. Mechanically, circ_0078767 regulates the GPX3 expression in NSCLC cells by spongy miR-665. In addition, in vivo studies have shown that downregulation of circ_0078767 promotes tumor growth. Circ_0078767 silencing promotes proliferation, migration, invasion, and glycolysis of NSCLC cells by regulating the miR-665/GPX3 axis, suggesting that circ_0078767/miR-665/GPX3 axis may be a potential regulatory mechanism for the treatment of NSCLC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.