Abstract

ObjectiveHead and neck squamous cell carcinoma (HNSCC) is one severe malignancy driven by complex cellular and signaling mechanisms. However, the roles of circular RNAs (circRNAs) in HNSCC’s development remains poorly understood. Therefore, this study investigated the functions of differentially expressed circRNAs in regulating HNSCC cell functions.MethodsDifferentially expressed circRNAs were characterized through RNA sequencing in HNSCC tissues. CircRNA’s identity was then confirmed using RT-PCR and Sanger’s sequencing. Next, expression levels of circRNA and mRNA were detected by qRT-PCR, after which protein abundances were measured by Western blotting. Subsequently, the proliferation, migration, and invasion of HNSCC cells was assessed by MTS, wound healing, and Transwell system, respectively, followed by identification of circRNA-binding proteins in HNSCC cells by circRNA pull-down, coupled with mass spectrometry.ResultsGreat alterations in circRNA profiles were detected in HNSCC tissues, including the elevated expression of circ_0000045. As observed, silencing of circ_0000045 effectively repressed the proliferation, migration, and invasion of HNSCC cell lines (FaDu and SCC-9). Contrarily, circ_0000045’s overexpression promoted the proliferation, migration, and invasion in FaDu and SCC-9 cells. Results also showed that circ_0000045 was associated with multiple RNA-binding proteins in HNSCC cells, such as HSP70. Moreover, circ_0000045 knockdown enhanced HSP70 expression and inhibited JNK2 and P38’s expression in HNSCC cells, which were oppositely regulated by circ_0000045’s overexpression.ConclusionThe high expression of circ_0000045; therefore, promoted cell proliferation, migration, and invasion during HNSCC’s development through regulating HSP70 protein and mitogen-activated protein kinase signaling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.