Abstract

Studies have shown that circRNAs are important regulatory molecules involved in cell physiology and pathology. Herein, we analyzed the role of circ_ZNF512 in cardiomyocyte autophagy of myocardial ischemia/reperfusion (I/R) injury. A mouse model was induced by ligation of the left anterior descending artery followed by reperfusion. An in vitro model was also developed in cultured cardiomyocytes following hypoxia/reoxygenation (H/R) injury. It was established that EGR1 expression was increased in myocardial tissues of I/R mice and H/R-induced cardiomyocytes. Silencing of circ_ZNF512 attenuated its binding to miR-181d-5p, which in turn impaired the EGR1 expression by targeting its 3'-UTR, thus promoting the autophagy of cardiomyocytes and suppressing cell apoptosis to alleviate myocardial tissue injury. Additionally, the circ_ZNF512/miR-181d-5p/EGR1 crosstalk activated the mTORC1/TFEB signaling pathway, increasing mTORC1 expression while suppressing TFEB expression. Together, circ_ZNF512 knockdown protects against myocardial I/R injury, which may be a potential therapeutic approach for preventing myocardial I/R injury.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call