Abstract

BackgroundLung cancer is one of the most common malignancies globally and a significant component of cancer‐related deaths. The lack of early diagnosis accounts for detecting approximately 75% of cancer patients at an intermediate to an advanced stage, with a low 5‐year survival rate. Therefore, a more comprehensive understanding of the molecular mechanisms of lung cancer development is necessary to find reliable and effective therapeutic and diagnostic biomarkers.Methodscirc_SAR1A, miR‐21‐5p, and TXNIP in lung cancer tissues, animal xenografts, and cell lines were validated by qRT‐PCR and western blotting analyses. RNase R digestion and nuclear/cytoplasm fractionation experiments were utilized to determine the stability and localization of circ_SAR1A in lung cancer cells. The binding between miR‐21‐5p and circ_SAR1A or TXNIP was confirmed by luciferase reporter, RNA pull‐down, Spearman's correlation, and rescue assays. CCK‐8, colony formation, flow cytometry, Transwell, and western blotting were utilized to illustrate the malignant behavior of lung cancer cells.Resultscirc_SAR1A and TXNIP were down‐regulated while miR‐21‐5p was up‐regulated in lung cancer samples and cells. circ_SAR1A was located predominantly in the cytoplasm; it inhibited lung cancer growth in vitro and in vivo by sponging to miR‐21‐5p. miR‐21‐5p silencing suppressed lung cancer malignancy by targeting TXNIP.Conclusionscirc_SAR1A is a critical negative regulator of lung carcinogenesis. circ_SAR1A/miR‐21‐5p/TXNIP attenuation inhibited lung cancer progression, presenting an ideal diagnostic and a potential therapeutic target.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call