Abstract

BackgroundCoronary artery disease (CAD) is one of the main risks of death, which is mainly caused by coronary arteries arteriosclerosis. Circular RNAs (circRNAs) have shown important regulatory roles in cardiovascular diseases. We amid to explore the role of circ_ROBO2 in CAD.MethodsCardiac microvascular endothelial cells (CMECs) stimulated by oxidized low-density lipoprotein (ox-LDL) were served as the cellular model of CAD. Real-time quantitative polymerase chain reaction (RT-qPCR) and western blot assay were performed to detect RNA levels and protein levels, respectively. Cell proliferation was assessed by 5-ethynyl-2′-deoxyuridine (EdU) assay and Cell Counting Kit-8 (CCK-8) assay. Flow cytometry was employed for measuring cell apoptosis. Matrigel tube formation assay was used to evaluate angiogenesis ability. The intermolecular interaction was predicted by bioinformatics analysis and verified by dual-luciferase reporter and RNA-pull down assays.ResultsThe expression of circ_ROBO2 was upregulated in CAD patients and ox-LDL-induced CMECs. Treatment of ox-LDL suppressed cell proliferation and angiogenic ability as well as promoted the apoptosis of CMECs partly by upregulating circ_ROBO2. MicroRNA-186-5p (miR-186-5p) was identified as a target of circ_ROBO2, and circ_ROBO2 knockdown attenuated ox-LDL-induced damage in CMECs by sponging miR-186-5p. Tripartite motif containing 14 (TRIM14) acted as a target of miR-186-5p, and TRIM14 overexpression alleviated miR-186-5p-mediated inhibitory effect on ox-LDL-induced injury in CMECs. Circ_ROBO2 positively regulated TRIM14 expression by sponging miR-186-5p.ConclusionCirc_ROBO2 played a promoting role in ox-LDL-induced CMECs injury by sponging miR-186-5p and regulating TRIM14, providing a promising treatment strategy for CAD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call