Abstract

BackgroundCervical cancer is a fatal burden for women. Circular RNAs (circRNAs) are important regulators in cancer development. Our study aimed to investigate the function and action mechanism of a novel circRNA, circ_0084927, in cervical cancer.MethodsThe expression of circ_0084927, miR-142-3p and ADP-ribosylation factor-like protein 2 (ARL2) mRNA was measured by quantitative real-time polymerase chain reaction (qRT-PCR). For functional analyses, cell proliferation was assessed using cell counting kit-8 (CCK-8) assay. Cell cycle distribution was monitored by flow cytometry assay. Cell migration and cell invasion were evaluated by transwell assay. The interaction between miR-142-3p and circ_0084927 or ARL2 was predicted by the bioinformatics analysis and validated by dual-luciferase reporter assay and RNA immunoprecipitation assay (RIP) assay. The expression of ARL2 at the protein level was detected by Western blot. Animal tumor formation assay was performed to monitor the tumorigenicity of circ_0084927 in vivo.ResultsThe expression of circ_0084927 and ARL2 was enhanced in cervical cancer tissues and cells, while the expression of miR-142-3p was opposite to them. Circ_0084927 knockdown significantly blocked cervical cancer cell proliferation, migration and invasion and induced cell cycle arrest. MiR-142-3p was targeted by circ_0084927, and miR-142-3p inhibition reversed the effects of circ_0084927 knockdown. Besides, miR-142-3p bound to ARL2, and the inhibitory effects of miR-142-3p restoration on cell proliferation, cycle, migration and invasion were counteracted by ARL2 overexpression. More importantly, circ_0084927 upregulated ARL2 expression by sponging miR-142-3p. Circ_0084927 knockdown retarded tumor growth in vivo by regulating miR-142-3p and ARL2.ConclusionCirc_0084927 accelerated the progression of cervical cancer partly by mediating the miR-142-3p/ARL2 axis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.