Abstract
Circular RNAs (circRNAs) have been reported to paly roles in the progression and management of breast cancers (BC). This work aimed to detect the role and mechanism of circ_0008717 in BC tumorigenesis. Expression levels of genes and proteins were evaluated by quantitative real-time polymerase chain reaction and western blot. In vitro assays were conducted using cell counting kit-8, colony formation, transwell, tube formation, and flow cytometry assays, respectively. The interaction between miR-326 and circ_0008717 or GATA6 (GATA Binding Protein six) was confirmed by bioinformatics analysis, and dual-luciferase reporter assay and RNA immunoprecipitation assay. The murine xenograft models were established to perform in vivo assay. Circ_0008717 and GATA6 were highly expressed, while miR-326 was lowly expressed in BC tissues and cells. Functionally, knockdown of circ_0008717 not only suppressed breast cancer cell proliferation, angiogenesis, migration, invasion and epithelial-mesenchymal transition (EMT) in vitro, but also hindered tumor growth and EMT process in vivo. Mechanistically, Circ_0008717 directly bound to miR-326, which targeted GATA6. Rescue experiments showed that miR-326 reversed the anticancer action of circ_0008717 knockdown on BC cells. Moreover, miR-326 restoration repressed BC cell growth and metastasis, which were attenuated by GATA6 overexpression. In addition, we also observed that circ_0008717 could regulate GATA6 expression by sponging miR-326. Circ_0008717 promoted breast cancer growth and metastasis through miR-326/GATA6 axis, revealing a potential therapeutic target for breast cancer treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.