Abstract

Circular RNAs (circRNAs) are a group of important molecules involved in the progression of various cancers, including colorectal cancer (CRC). Here, we aim to investigate the role and molecular mechanism of circ_0007422 in regulating CRC malignant progression. The expression levels of circ_0007422, miR-1256, and PDL1 were detected by qRT-PCR. Cell viability, proliferation, apoptosis, invasion, and self-replication ability were analyzed by CCK-8, EdU, flow cytometry, transwell, and spheroid formation experiments, respectively. Protein levels were determined by western blotting assay. CRC cells were co-cultured with CD8 + T cells, phytohemagglutinin-stimulated peripheral blood mononuclear cells (PBMCs), or cytokine-induced killer (CIK) cells in vitro, and CD8 + T-cell apoptosis, IFN-γ and TNF-α levels, and survival rate of CRC cells were analyzed to reveal the role of circ_0007422 in antitumor immunity. The relationship between miR-1256 and circ_0007422 or PDL1 was identified by a dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. A xenograft tumor model was established to verify the function of circ_0007422 in tumor growth in vivo. Immunohistochemistry (IHC) assay was used to detect positive expression rates of Ki67, E-cadherin, N-cadherin, and PDL1 expression in primary tumors from CRC cells. Circ_0007422 was upregulated in CRC tissues and cells and its knockdown inhibited proliferation, invasion, self-replication ability, and immune escape and promoted apoptosis of CRC cells. Additionally, circ_0007422 bound to miR-1256, which was identified to target PDL1. MiR-1256 inhibition reversed the effects of circ_0007422 knockdown on the tumor properties and immune escape of CRC cells. Moreover, miR-1256 introduction interacted with PDL1 to suppress proliferation, invasion, self-replication ability, and immune escape and promote apoptosis of CRC cells. Further, circ_0007422 knockdown hampered tumorigenesis of CRC cells in vivo. Circ_0007422 knockdown inhibited tumor property and immune escape of colorectal cancer through the miR-1256/PDL1 pathway, providing a potential novel therapeutic target for CRC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call