Abstract
Cervical cancer (CC) is a leading cause of high morbidity and mortality in women worldwide. Circular RNAs (circRNAs) are considered to be essential regulators of various cancers, including CC. The purpose of this study was to investigate the role and mechanism of circ_0005576 in CC progression. The levels of circ_0005576, miR-1305, and poly(A)-binding protein-interacting protein 1 (PAIP1) were detected by quantitative real-time PCR (qRT-PCR) or western blot assay. The stability and location of circ_0005576 were determined by ribonuclease R (RNase R) assay and subcellular fractionation distribution assay, respectively. Cell proliferation was evaluated by CCK-8 assay, EDU incorporation assay, and colony formation assay. Cell migration and invasion were assessed by transwell assay. The interactions between miR-1305 and circ_0005576 or PAIP1 were validated by dual-luciferase reporter assay. The protein expression of cyclin D1, vimentin, and matrix metallopeptidase 9 (MMP9) was tested by western blot. Moreover, mice xenograft models were constructed to analyze tumor growth in vivo. Circ_0005576 and PAIP1 were upregulated, while miR-1305 was downregulated in CC tissues and cells. Circ_0005576 was a stable circRNA that was mainly distributed in the cytoplasm of cells. Knockdown of circ_0005576 suppressed the proliferation, migration, and invasion of CC cells, while the silence of miR-1305 facilitated the development of CC cells. Meanwhile, circ_0005576 could sponge miR-1305 to promote PAIP1 expression. Furthermore, PAIP1 overexpression relieved the influence of circ_0005576 silence on the growth of CC cells. Additionally, circ_0005576 silence hindered CC tumor growth in vivo. Circ_0005576 depletion suppressed tumor development in CC by regulating the miR-1305/PAIP1 axis, suggesting that circ_0005576 might be a potential biomarker for CC treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.