Abstract

Specific circular RNAs (circRNAs) have been proven to play crucial roles in osteogenesis in vitro and in vivo. This study aims to identify a certain circRNA involved in the osteogenic differentiation of periodontal ligament stem cells (PDLSCs) and explore its regulatory role. The expression of 5 candidate circRNAs (circ_0026344, circ_ACAP2, circ_0003764, circ_0008259, and circ_0060731) was detected by real-time quantitative reverse-transcription polymerase chain reaction (qRT-PCR) after PDLSCs were cultured in the osteogenic induction medium or medium supplemented with tumour necrosis factor-α (TNF-α, 10 ng/mL) for 3 and 7 days. The circRNA significantly decreased in both 3 and 7 days of osteogenic induction in PDLSCs and markedly increased in TNF-α-induced PDLSCs for 3 and 7 days screened. Identified circRNA was knocked down or overexpressed, and the effect on the osteogenic differentiation of PDLSCs was investigated by qRT-PCR, western blot, alkaline phosphatase (ALP) staining, and alizarin red S (ARS) staining. Cell counting kit-8 (CCK-8) assay and 5-ethynyl-2'-deoxyuridine (EdU) assay were applied to detect the effect of the circRNA on the proliferation of PDLSCs. qRT-PCR results showed that the expression of circ_0003764 was significantly decreased when PDLSCs were cultured in the osteogenic induction medium for 3 or 7 days, whereas it was dramatically increased in TNF-α-induced PDLSCs. Knockdown of circ_0003764 promoted the expression of the osteogenesis-related genes (RUNX2, ALP, OCN) and proteins (RUNX2, OCN), enhanced the ALP activity, and elevated the mineralization by PDLSCs, as shown by ARS staining. However, with the overexpression of circ_0003764, the osteogenic differentiation capacity of PDLSCs was significantly reduced. The CCK-8 and EdU results indicated that circ_0003764 could inhibit the proliferation of PDLSCs. Circ_0003764 is involved in the osteogenesis process and inhibits the osteogenic differentiation and proliferation of PDLSCs. This study indicates that circ_0003764 can serve as a diagnostic and therapeutic target in bone regeneration-related diseases treated by PDLSCs-based tissue engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call