Abstract

Prostate cancer (PCa) ranks as the second most prevalent cancer among males globally. However, the exact mechanisms underlying its progression remain inadequately elucidated. The present study sought to investigate the role and underlying molecular mechanism of hsa_circ_0001671 (circ_0001671) in the pathogenic behavior of PCa cells. Guided by the ceRNA theory, miR-27b-3p was employed to identify circRNAs that could potentially regulate Bloom Syndrome Protein (BLM). A series of experimental approaches including bioinformatics, luciferase assays, Fluorescent In Situ Hybridization (FISH), RNA-pulldown, and RNA Immunoprecipitation (RIP) were utilized to validate the miRNA sponge function of circ_0001671. Divergent primer PCR, RNase R treatments, and Sanger sequencing were conducted for the identification of circ_0001671. Quantitative RT-PCR and Western blot analyses were performed to validate gene expression levels. Both in vitro and in vivo experiments were conducted to assess the functional role of circ_0001671 in PCa cells.It was observed that the expression levels of circ_0001671 and BLM were significantly elevated in PCa tissues and cell lines, whereas miR-27b-3p showed decreased expression. Circ_0001671 was found to promote cellular proliferation, migration, and invasion, while inhibiting apoptosis. In vivo assays confirmed that circ_0001671 facilitated tumor growth. Further mechanistic studies revealed that circ_0001671 acted as a competing endogenous RNA (ceRNA) for BLM by sponging miR-27b-3p. The oncogenic role of circ_0001671 in PCa was shown to be modulated through the miR-27b-3p/BLM axis. In conclusion, circ_0001671 exerts an oncogenic effect in prostate cancer through the regulation of BLM by sponging miR-27b-3p, thus suggesting a novel molecular target for the treatment of PCa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.