Abstract

Thoracic aortic aneurysm (TAA) is a serious vascular disease causing the death of elder people. Accumulating studies have reported that circular RNAs (circRNAs) are implicated in the regulation of aortic aneurysms. However, the role of circ_0000595 in the progression of TAA is still unclear. Quantitative real-time PCR (qRT-PCR) and western blotting were implemented to assess circ_0000595, microRNA (miR)-582-3p, guanine nucleotide-binding protein alpha subunit (ADAM10), PCNA, Bax, and Bcl-2 expression. The proliferation of vascular smooth muscle cells was determined using cell counting kit 8 (CCK-8) and 5-ethynyl-2-deoxyuridine (EdU). Cell apoptosis was measured using flow cytometry, and caspase-3 activity was analyzed using a commercial kit. After bioinformatics analysis, the interaction between miR-582-3p and circ_0000595 or ADAM10 was validated using a dual-luciferase reporter and RNA immunoprecipitation. As compared with controls, TAA tissues and CoCl2-induced VSMCs displayed high expression of circ_0000595 and ADAM10, and low expression of miR-582-3p. CoCl2 treatment evidently suppressed VSMC proliferation and promoted VSMCs apoptosis, and these impacts were reverted by circ_0000595 knockdown. Circ_0000595 acted as a molecular sponge for miR-582-3p, and circ_0000595 silencing-mediated influences in CoCl2-induced VSMCs were overturned by miR-582-3p inhibitor. ADAM10 was confirmed as a target gene of miR-582-3p, and miR-582-3p overexpression-induced influence was almost restored by overexpressed ADAM10 in CoCl2-induced VSMCs. Besides, circ_0000595 contributed to ADAM10 protein expression by sponging miR-582-3p. Our data verified that circ_0000595 silencing might attenuate CoCl2-mediated impacts in VSMCs by regulating the miR-582-3p/ADAM10 axis, providing new potential roads for treating TAA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call