Abstract

Objective: To explore the effect and molecular mechanism of circ_0000263 on HeLa cell activity, apoptosis, telomerase activity, and radiosensitivity. Methods: The Hela cells were divided into si-NC, si-circ, vector, circ_0000263, anti-NC, anti-miR-338-3p, miR-NC, miR-338-3p, si-circ+anti-NC, si-circ+ anti-miR-338-3p, si-circ+vector, si-circ+TERT, sh-NC, sh-circ groups. Reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) was used to detect the expressions of circ_0000263 and miR-338-3p. Cell clone formation array was used to detect cell survival; cell counting kit-8 (CCK-8) to detect cell proliferation; flow cytometry to detect apoptosis; western blot method to detect the expressions of proliferating cell nuclear antigen (PCNA), Cleaved-casp3, telomerase reverse transcriptase (TERT) proteins; double luciferase assay to detect the targeting relationships of circ_0000263 and miR-338-3p, miR-338-3p and TERT; telomere repeat amplification enzyme linked immunosorbent assay (TRAR-ELISA) to detect telomerase activity. Results: Circ_0000263 was highly expressed in Hela cells, miR-338-3p was low expressed, and TERT was highly expressed; circ_0000263 was also highly expressed in Hela cells treated with radiation (P<0.05). Knockdown of circ_0000263 inhibited the clone formation and cell proliferation ability of HeLa cells, and enhanced the radiosensitivity and apoptosis of HeLa cells. In contrast, knockdown of circ_0000263 decreased PCNA protein expression level and enhanced Cleaved-casp3 protein expression level in HeLa cells (P<0.05). The apoptosis rate in the si-circ group was (13.19±1.12)%, which was higher than (6.80±0.62)% of si-NC group (P<0.05). The apoptosis rate in the si-circ+4 Gy group was (24.82±1.57)%, which was higher than (17.00±0.96)% of si-NC+4 Gy group (P<0.05). Circ_0000263 targeted regulated miR-338-3p, and miR-338-3p targeted regulated TERT. MiR-338-3p was lowly expressed in HeLa cells, and knockdown of circ_0000263 elevated miR-338-3p expression level in HeLa cells. Circ_0000263 regulated TERT expression and inhibited telomerase activity through miR-338-3p. MiR-338-3p/TERT can restore the effect of circ_0000263 on the radiosensitivity of Hela cells. The apoptosis rate in the si-circ+anti-NC group was (27.37±0.89)%, which was higher than (18.22±1.18)% of the si-circ+anti-miR-338-3p group (P<0.05). The apoptosis rate in the si-circ+vector group was (27.55±0.48)%, which was higher than (20.10±0.68)% of si-circ+TERT group (P<0.05). After 72 hours of radiation by 4 Gy, the cell survival fraction of si-circ+anti-NC group was 0.41±0.02, which was lower than 0.66±0.03 of the si-circ+anti-miR-338-3p group (P<0.05); the cell survival fraction of si-circ+vector group was 0.42±0.05, which was lower than 0.70±0.03 of si-circ+TERT group (P<0.05). Conclusion: Inhibiting the expression of circ_0000263 supresses the proliferation of Hela cells by regulating miR-338-3p/TERT, promotes apoptosis, inhibits telomerase activity, increases the radiosensitivity of cancer cells, and provides a theoretical basis for improving the radiosensitivity of Hela cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.