Abstract

Considering the global concern of ciprofloxacin resistance, the aim of this study was to evaluate the characteristics of ciprofloxacin-resistant (CIP-R) Escherichia coli isolated from patients with community-acquired urinary tract infections (UTIs) in Brasília, Brazil. CIP-R E. coli isolated from different outpatients between July 2013 and April 2014 in a tertiary hospital were analysed for antibiotic resistance profile, phylotype, uropathogenic E. coli (UPEC) virulence genes, clonal relationship by enterobacterial repetitive intergenic consensus PCR (ERIC-PCR), and multilocus sequence typing (MLST). Among the 324 UPEC analysed, 263 (81.2%) were ciprofloxacin-sensitive and 61 (18.8%) were CIP-R. Antibiogram analysis of the 61 CIP-R strains showed that 45 (73.8%) were also multidrug-resistant. The most prevalent phylogroups were A and B2 (26/61 and 18/61, respectively). traT (53/61) and aer-traT (24/61) were the most common gene and genotype observed. Dendrogram analysis found that multidrug resistance and virulence genes were distributed among CIP-R strains independently of clonality and phylogroup. Six ERIC clusters (strains sharing ≥85% genetic similarity) were observed. MLST analysis of all strains of each cluster identified sequence types (STs) associated with worldwide antimicrobial resistance dissemination, including B2-ST131 and ST410, as well as STs not yet associated with antimicrobial resistance propagation, such as ST1725 and ST179. These results demonstrate that ciprofloxacin resistance dissemination by UPEC causing community-acquired UTIs was associated with multidrug resistance and was promoted by pandemic and non-pandemic STs, a concerning scenario for the local population.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call