Abstract

In this study several ciprofloxacin (CFX) imprinted and non-imprinted hydrogels were prepared and evaluated as ocular drug delivery systems in aqueous media. 2-Hydroxyethyl methacrylate (HEMA) was used as a solvent and backbone monomer, ethylene glycol dimethacrylate (EGDMA) as a cross-linker, methacrylic acid (MAA) as a functional monomer and CFX as the template molecule. CFX-imprinted hydrogels (MIPs) were prepared applying different CFX:MAA molar ratios (1:16, 1:20 and 1:32) in feed composition of monomer solutions. Thermal polymerization was applied and hydrogels were synthesized in a polypropylene mold (0.4 mm thickness). Swelling and binding properties of hydrogels were evaluated in water. Release profile of the MIPs was evaluated in NaCl (0.9%) and artificial tears. The data showed that enhancing the MAA concentration, as a co-monomer, and using molecular imprinting improved binding properties of the synthesized hydrogels. The optimized MIPs with 400 mM MAA and CFX: MAA molar ratio of 1:20 and 1:16 showed the greatest affinity for CFX and the highest ability to control drug release. In vitro antibacterial activity of hydrogels was studied and demonstrated the effect of CFX-loaded hydrogels against Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) isolated from patients’ eyes. This study indicated antibacterial efficacy of CFX-loaded MIP hydrogels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.