Abstract

Cinnamyl alcohol and cinnamal are frequent fragrance contact allergens. Both are included in the European baseline fragrance mix I, which is used for screening of contact allergy in dermatitis patients. The aim of this study was to investigate the autoxidation of cinnamyl alcohol and to identify the oxidation products formed on air exposure. We also wanted to evaluate the effect of autoxidation on the sensitization potency of cinnamyl alcohol. Samples of commercially available cinnamyl alcohol with and without purification were exposed to air, and the autoxidation was followed by chemical analysis. The analysis was performed with mass spectrometry (LC/MS/MS). Sensitization potencies of compounds were determined with the murine local lymph node assay (LLNA) in mice. Chemical analysis showed that the concentration of cinnamyl alcohol in the air-exposed samples decreased rapidly over time, and that autoxidation products were formed. Cinnamal, epoxy cinnamyl alcohol and cinnamic acid were identified as oxidation products. According to our study, cinnamal and epoxy cinnamyl alcohol were the first autoxidation products formed. The epoxy cinnamyl alcohol was shown to be the oxidation product with the highest sensitization potency. The analysis of our samples of commercially available cinnamyl alcohol showed that there was already a content of 1.5% cinnamal at the start of the autoxidation experiments. Cinnamyl alcohol readily autoxidizes upon air exposure, and forms strong sensitizers as determined by the LLNA. Cinnamal was formed in the largest amounts, showing that cinnamal is not only formed via bioactivation, as has previously been shown. A highly sensitizing epoxide was also identified and quantified in the oxidation mixture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call