Abstract

The deposition of lignin during plant-pathogen interactions is thought to play a role in plant defence. However, the function of lignification genes in plant disease resistance is poorly understood. In this article, we provide genetic evidence that the primary genes involved in lignin biosynthesis in Arabidopsis, CAD-C and CAD-D, act as essential components of defence to virulent and avirulent strains of the bacterial pathogen Pseudomonas syringae pv. tomato, possibly through the salicylic acid defence pathway. Thus, in contrast with cellulose synthesis, whose alteration leads to an increase in disease resistance, alteration of the cell wall lignin content leads directly or indirectly to defects in some defence components.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.