Abstract

The resistance mechanisms of bacteria and protozoans have evidenced the need of discover new compounds with potential pharmaceutical activity against pathogenic microorganisms. Medicinal plants have been for centuries a promising alternative as sources of new drugs. The objective of this work was to evaluate the chemical composition, antimicrobial and antileishmanial activities of Cinnamomum zeylanicum, Origanum vulgare, and Curcuma longa essential oils. Chemical analysis was performed by gas chromatography-mass spectrometry. Antimicrobial activity was performed by disk diffusion and minimum inhibitory concentration (MIC) test. Antileishmanial activity was performed against antipromastigote and intracellular amastigote of Leishmania amazonensis. Cytotoxic and nitrite production were realized in BALB/c peritoneal macrophages. The major compounds of the essential oils were cinnamic aldehyde (46.30%) in C. zeylanicum, cis-p-menth-2-en-1-ol (33.88%) and linalyl acetate (13.90%) in O. vulgare, and turmerone (55.43%) in C. longa. The MIC showed significant antimicrobial activity of C. longa essential oil against S. aureus (83.3 ± 14.43 µg/mL). Antipromastigote activity showed IC50 values >500 µg/mL to C. zeylanicum, 308.4 ± 1.402 µg/mL to O. vulgare, and 405.5 ± 1.119 µg/mL to C. longa essential oil. Activity against intracellular amastigote of L. amazonensis showed IC50 of 63.3 ± 1.369 µg/mL and cytotoxic was not observed, resulting in selectivity index higher than 15.79 to parasite. C. longa essential oil decreased nitrite production in peritoneal macrophages, but not in Leishmania-infected cells. The chemical composition of the three essential oils is directly associated to its potential biological action, as the antimicrobial activity. C. longa presented a potent antileishmanial activity against promastigote and intracellular amastigote of L. amazonensis, although this activity is not linked to nitric oxide, since C. longa essential oil inhibits its production.

Highlights

  • Hospital-acquired infections are directly linked to Grampositive pathogens as Staphylococcus aureus, and Gramnegative pathogens as Escherichia coli and Pseudomonas aeruginosa

  • Fifteen compounds were identified in C. zeylanicum, with peaks 6, 8, and 9 being identified as cinnamic aldehyde (46.30%), α-copaene (16.35%), and transβ-Caryophyllene (8.26%), respectively, representing its main constituents

  • In order to analyze the chemical composition and antimicrobial and antileishmanial activity of C. zeylanicum, O. vulgare, and C. longa essential oils, we evaluated the chemical constituents, activity against E. coli, S. aureus, and P. aeruginosa, activity against promastigote and intracellular amastigote of L. amazonensis, and cytotoxicity in BALB/c peritoneal macrophage

Read more

Summary

Introduction

Hospital-acquired infections are directly linked to Grampositive pathogens as Staphylococcus aureus, and Gramnegative pathogens as Escherichia coli and Pseudomonas aeruginosa. It is estimated that in the United States in the 1990s hospital infections cost $4.5 billion and contributed to more than 88,000 deaths [1]. The main treatment adopted to combat hospital infections is the indiscriminate use of antimicrobials that generated methicillin-resistant S. aureus. Frequent use of antibiotics is cited as the cause of various bacteria resistance to a range of commonly available antibiotics, especially penicillin [2]. Drugs used during treatment of infections are generally associated with adverse effects on the patient, including hypersensitivity, hepatotoxicity, and nefrotoxicity. In the face of these side effects and the resistance

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call