Abstract

Cinnamon is a wildly used traditional Chinese herbal medicine for osteoarthritis (OA) treatment, but the underlying mechanism remains ambiguous. The purpose of this study is to explore the mechanism of cinnamic aldehyde (CA), a bioactive substance extracted from Cinnamon, on synovial inflammation in OA. A total of 144 CA‐OA co‐targeted genes were identified by detect databases (PubChem, HIT, TCMSP, TTD, DrugBank and GeneCards). The results of GO enrichment analysis indicated that these co‐targeted genes have participated in many biological processes including ‘inflammatory response’, ‘cellular response to lipopolysaccharide’, ‘response to drug’, ‘immune response’, ‘lipopolysaccharide‐mediated signalling pathway’, etc. KEGG pathway analysis showed these co‐targeted genes were mainly enriched in ‘Toll‐like receptor signalling pathway’, ‘TNF signalling pathway’, ‘NF‐kappa B signalling pathway’, etc. Molecular docking demonstrated that CA could successfully bind to TLR2 and TLR4. The results of in vitro experiments showed no potential toxicity of 10, 20 and 50 μM/L CA on human OA FLS, and CA can significantly inhibit the inflammation in LPS‐induced human FLS. Further experimental mechanism evidence confirmed CA can inhibited the inflammation in LPS‐induced human OA FLS via blocking the TLR4/MyD88 signalling pathway. Our results demonstrated that CA exhibited strong anti‐inflammation effect in OA FLS through blocking the activation of TLR4/MyD88 signalling pathway, suggesting its potential as a hopeful candidate for the development of novel agents for the treatment of OA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.