Abstract
The advent of single-molecule atomic-resolution time-resolved electron microscopy (SMART-EM) has created a new field of 'cinematic chemistry,' allowing for the cinematographic recording of dynamic behaviors of organic and inorganic molecules and their assembly. However, the limited electron dose per frame of video images presents a major challenge in SMART-EM. Recent advances in direct electron counting cameras and techniques to enhance image quality through the implementation of a denoising algorithm have enabled the tracking of stochastic molecular motions and chemical reactions with sub-millisecond temporal resolution and sub-angstrom localization precision. This review showcases the development of dynamic molecular imaging using the SMART-EM technique, highlighting insights into nanomechanical behavior during molecular shuttle motion, pathways of multistep chemical reactions, and elucidation of crystallization processes at the atomic level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.